On the Delay and Inviscid Nature of Turbulent Break-away Separation in the High-Re Limit

نویسنده

  • Bernhard Scheichl
چکیده

We complement the recently achieved status quo of a self-consistent asymptotic theory: incompressible-flow separation from the perfectly smooth surface of a bluff rigid obstacle that perturbs an otherwise uniform flow in an unbounded domain. Here the globally formed Reynolds number, Re, takes on arbitrarily large values, and we are concerned with a long-standing challenge in boundary layer theory. Specifically, the external flow is sought in the class of potential flows with free streamlines, and the level of turbulence intensity, concentrated in the BL undergoing separation, is measured in terms of distinguished limits. Their particular choices categorise the type of the viscous-inviscid interaction mechanism governing local separation and the strength of its downstream delay when compared with laminar-flow separation. In the case of extreme retardation, this implies the selection of a fully attached potential flow around a closed body, the singular member of the family of free-streamline flows. In turn, the asymptotic theory predicts the distance of the separation from the thus emerging rear stagnation point or trailing edge of the body to vanish at a rate much weaker than that given by 1/ lnRe, which plays a crucial role in the scaling of firmly attached turbulent BLs. Notably, the overall theory only resorts to specific turbulence closures when it comes to numerical studies. 1 Motivation and Attached-Flow Structure Gross separation of a nominally two-dimensional (most developed) turbulent boundary layer (BL) in subsonic flow around a bluff body in the limit of large values of the globally formed Reynolds number, Re, has regained awareness in the last years, Bernhard Scheichl Vienna University of Technology, Institute of Fluid Mechanics and Heat Transfer, Tower BA/E322, Getreidemarkt 9, 1060 Vienna, e-mail: [email protected] AC2T research GmbH (Austrian Center of Competence for Tribology), Viktor-Kaplan-Straße 2C, 2700 Wiener Neustadt, e-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Break-away separation for high turbulence intensity and large Reynolds number

Massive flow separation from the surface of a plane bluff obstacle in an incompressible uniform stream is addressed theoretically for large values of the global Reynolds number Re. The analysis is motivated by a conclusion drawn from recent theoretical results which is corroborated by experimental findings but apparently contrasts with common reasoning: the attached boundary layer extending fro...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

تاثیر ارتفاع در فرایند جدایش غیردائم موشکهای چند مرحله‌ای

Effect of altitude is discussed in the unsteady separation of multi stage rockets. Axisymmetric, unsteady and turbulent Navier stokes equations are solved numerically. The governing equations are split into a hyperbolic inviscid part and a parabolic diffusion part. The hyperbolic part is solved by an explicit second-order time and space of Godunov-type scheme. Moving mesh and moving boundary al...

متن کامل

Laminar and Turbulent Aero Heating Predictions over Blunt Body in Hypersonic Flow

In the present work, an engineering method is developed to predict laminar and turbulent heating-rate solutions for blunt reentry spacecraft at hypersonic conditions. The calculation of aerodynamic heating around blunt bodies requires alternative solution of inviscid flow field around the hypersonic bodies. In this paper, the procedure is of an inverse nature, that is, a shock wave is assumed a...

متن کامل

3D Simulation of the Effects of the Plasma Actuator on the Unsteady, Turbulent and Developing Flow within a Circular Duct

The objective of current paper is 3D simulation of turbulent, developing flow and unsteady within a circular duct in presence of the body force vector persuaded by Dielectric barrier discharge (DBD) plasma actuator inside the surface of geometry for the first time. This article aims at investigating of applying plasma actuator to control separation with special arrangement of electrodes. For th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015